## 5-V Low-Drop Voltage Regulator

## **TLE 4267**

#### **Bipolar IC**

#### **Features**

- Output voltage tolerance  $\leq \pm 2\%$
- Low-drop voltage
- Very low standby current consumption
- Input voltage up to 40 V
- Overvoltage protection up to 60 V ( $\leq$  400 ms)
- Reset function down to 1 V output voltage
- ESD protection up to 2000 V
- Adjustable reset time
- On/off logic

Туре

TLE 4267

TLE 4267 G

TLE 4267 S

- Overtemperature protection
- Reverse polarity protection
- Short-circuit proof
- Wide temperature range
- Suitable for use in automotive electronics

Ordering Code

Q67000-A9153

Q67006-A9169

Q67000-A9246



P-TO220-7-230

#### **Functional Description**

TLE 4267 is a 5-V low-drop voltage regulator in a

TO220-7 package. It supplies an output current of > 400 mA. The IC is shortcircuit-proof and incorporates temperature protection that disables the IC at overtemperature.

Package

P-TO220-7-3

P-TO220-7-230

#### Application

The IC regulates an input voltage  $V_{\rm I}$  in the range 5.5 V <  $V_{\rm I}$  < 40 V to  $V_{\rm Qrated}$  = 5.0 V. A reset signal is generated for an output voltage  $V_{o}$  of < 4.5 V. The reset delay can be set with an external capacitor. The device has two logic inputs. It is turned-ON by a voltage of > 4 V on E2 by the ignition for example. It remains active as a function of the voltage on E6, even if the voltage on E2 goes Low. This makes it possible to implement a selfholding circuit without external components. When the device is turned-OFF, the output voltage drops to 0 V and current consumption tends towards 0 µA.

#### **Design Notes for External Components**

The input capacitor  $C_1$  is necessary for compensation line influences. The resonant circuit consisting of lead inductance and input capacitance can be damped by a resistor of approx. 1  $\Omega$  in series with  $C_1$ . The output capacitor is necessary for the stability of the regulating circuit. Stability is guaranteed at values of  $\geq 22 \ \mu$ F and an ESR of  $\leq 3 \Omega$  within the operating temperature range.

#### **Circuit Description**

The control amplifier compares a reference voltage, which is kept highly accurate by resistance adjustment, to a voltage that is proportional to the output voltage and drives the base of the series transistor via a buffer. Saturation control as a function of the load current prevents any over-saturating of the power element.

A comparator in the reset-generator block compares a reference that is independent of the input voltage to the scaled-down output voltage. If this reaches a value of 4.5 V, the reset-delay capacitor is discharged and then the reset output is set Low. As the output voltage increases again, the reset-delay capacitor is charged with constant current from  $V_{\rm Q}$  = 4.5 V onwards. When the capacitor voltage reaches the upper switching threshold, reset goes High again. The reset delay can be set within wide range by selection of the external capacitor.

With the integrated turn-ON/turn-OFF logic it is simple to implement delayed turn-OFF without external components.

| Pin 2 | Pin 6 | $V_{Q}$ | Remarks                                                                                                                                                                             |
|-------|-------|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| L     | Х     | OFF     | Initial state, pin 6 internally pulled up                                                                                                                                           |
| Н     | Х     | ON      | Regulator switched on via pin 2, by ignition for example                                                                                                                            |
| Н     | L     | ON      | Pin 6 clamped active to ground by controller while pin 2 is still high                                                                                                              |
| Х     | L     | ON      | Previous state remains, even ignition is shut off: self-holding state                                                                                                               |
| L     | L     | ON      | Ignition shut off while regulator is in self-holding state                                                                                                                          |
| L     | Н     | OFF     | Regulator shut down by releasing of pin 6 while pin 2 remains Low, final state. No active clamping required by external self-holding circuit ( $\mu$ C) to keep regulator shut off. |

#### Truth Table for Turn-ON/Turn-OFF Logic

Pin 2: (Inhibit, E2) Enable function, active High

Pin 6: (Hold, E6) Hold and release function, active Low

### **Pin Configuration**

(top view)



#### **Pin Definitions and Functions**

| Pin | Symbol | Function                                                                                                                           |
|-----|--------|------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Ι      | Input; block to ground directly at the IC by a ceramic capacitor                                                                   |
| 2   | E2     | Inhibit; device is turned-ON by High signal on this pin; internal pulldown resistor of 100 $k\Omega$                               |
| 3   | R      | <b>Reset Output;</b> open-collector output internally connected to the output via a resistor of 30 k $\Omega$                      |
| 4   | GND    | Ground; connected to rear of chip                                                                                                  |
| 5   | D      | Reset Delay; connect with capacitor to GND for setting delay                                                                       |
| 6   | E6     | <b>Hold;</b> see truth table above for function; this input is connected to output voltage across pullup resistor of 50 k $\Omega$ |
| 7   | Q      | <b>5-V Output</b> ; block to GND with 22- $\mu$ F capacitor, ESR < 3 $\Omega$                                                      |



#### **Block Diagram**

#### **Absolute Maximum Ratings**

 $T_{\rm J} = -40$  to 150 °C

| Parameter Symb |  | mbol Limit Values |      |  | Notes |
|----------------|--|-------------------|------|--|-------|
|                |  | min.              | max. |  |       |

### Input

| Voltage | $V_{\rm I}$ | - 42 | 42 | V | -                  |
|---------|-------------|------|----|---|--------------------|
| Voltage | $V_{I}$     | _    | 60 | V | <i>t</i> ≤ 400 ms  |
| Current | $I_1$       | _    | -  | - | Limited internally |

#### **Reset Output**

| Voltage | $V_{R}$        | - 0.3 | 7 | V | -                  |
|---------|----------------|-------|---|---|--------------------|
| Current | I <sub>R</sub> | -     | - | - | Limited internally |

#### **Reset Delay**

| Voltage $V_{d} = -0.3$ | 42 V | - |
|------------------------|------|---|
|------------------------|------|---|

## Absolute Maximum Ratings (cont'd)

 $T_{
m J}$  = - 40 to 150 °C

| Parameter            | Symbol          | Lim   | it Values | Unit | Notes              |
|----------------------|-----------------|-------|-----------|------|--------------------|
|                      |                 | min.  | max.      |      |                    |
| Current              | I <sub>d</sub>  | -     | -         | _    | _                  |
| Output               |                 |       |           |      |                    |
| Voltage              | $V_{Q}$         | - 0.3 | 7         | V    | _                  |
| Current              | IQ              | -     | -         | _    | Limited internally |
| Inhibit              |                 |       |           |      |                    |
| Voltage              | $V_{\rm E2}$    | - 42  | 42        | V    |                    |
| Current              | I <sub>E2</sub> | - 5   | 5         | mA   | <i>t</i> ≤ 400 ms  |
| Hold                 |                 |       |           |      |                    |
| Voltage              | $V_{ m E6}$     | - 0.3 | 7         | V    | _                  |
| Current              | I <sub>E6</sub> | _     | _         | mA   | Limited internally |
| GND                  |                 |       |           |      |                    |
| Current              | $I_{GND}$       | - 0.5 | _         | А    | _                  |
| Temperatures         |                 |       |           |      |                    |
| Junction temperature | TJ              | _     | 150       | °C   | -                  |
| Storage temperature  | $T_{\rm stg}$   | - 50  | 150       | °C   | _                  |
| Operating Range      |                 |       |           |      |                    |
| Parameter            | Symbol          | Lim   | it Values | Unit | Notes              |

| Parameter            | Symbol | Limit | values | Unit | Notes       |
|----------------------|--------|-------|--------|------|-------------|
|                      |        | min.  | max.   |      |             |
| Input voltage        | $V_1$  | 5.5   | 40     | V    | see diagram |
| Junction temperature | TJ     | - 40  | 150    | °C   | _           |

#### Thermal Resistance

| Junction ambient | $R_{ m thja}$ | _ | 70 | K/W | _               |
|------------------|---------------|---|----|-----|-----------------|
| Junction-case    | $R_{ m thjc}$ | - | 6  | K/W | -               |
| Junction-case    | $R_{ m thjc}$ | _ | 2  | K/W | <i>t</i> < 1 ms |

#### Characteristics

 $V_{I}$  = 13.5 V; - 40 °C <  $T_{J}$  < 125 °C;  $V_{E2}$  > 4 V (unless specified otherwise)

| Parameter                                                        | Symbol                    | Lir  | nit Valu | les  | Unit | Test Condition                                                                                     |  |
|------------------------------------------------------------------|---------------------------|------|----------|------|------|----------------------------------------------------------------------------------------------------|--|
|                                                                  |                           | min. | typ.     | max. |      |                                                                                                    |  |
| Output voltage                                                   | V <sub>Q</sub>            | 4.9  | 5        | 5.1  | V    | $5 \text{ mA} \le I_{\text{Q}} \le 400 \text{ mA}$ $6 \text{ V} \le V_{\text{I}} \le 26 \text{ V}$ |  |
| Output voltage                                                   | V <sub>Q</sub>            | 4.9  | 5        | 5.1  | V    | $5 \text{ mA} \le I_{\text{Q}} \le 150 \text{ mA}$ $6 \text{ V} \le V_{\text{I}} \le 40 \text{ V}$ |  |
| Output-current limiting                                          | $I_{Q}$                   | 500  | -        | -    | mA   | <i>T</i> <sub>J</sub> = 25 °C                                                                      |  |
| $\overline{\text{Current consumption}} \\ I_{q} = I_{I} - I_{Q}$ | I <sub>q</sub>            | _    | -        | 50   | μA   | Regulator-OFF                                                                                      |  |
| $\overline{\text{Current consumption}} \\ I_{q} = I_{I} - I_{Q}$ | Iq                        | _    | 1.0      | 10   | μA   | $T_{\rm J} = 25 \ ^{\circ}{\rm C}$<br>IC turned off                                                |  |
| Current consumption $I_q = I_1 - I_Q$                            | Iq                        | _    | 1.3      | 4    | mA   | $I_{Q} = 5 \text{ mA}$<br>IC turned on                                                             |  |
| Current consumption $I_q = I_1 - I_Q$                            | I <sub>q</sub>            | _    | _        | 60   | mA   | $I_{\rm Q} = 400 \text{ mA}$                                                                       |  |
| Current consumption $I_q = I_1 - I_Q$                            | I <sub>q</sub>            | _    | -        | 80   | mA   | $I_{\rm Q}$ = 400 mA<br>$V_{\rm I}$ = 5 V                                                          |  |
| Drop voltage                                                     | $V_{Dr}$                  | -    | 0.3      | 0.6  | V    | $I_{\rm Q} = 400 \ {\rm mA^{1)}}$                                                                  |  |
| Load regulation                                                  | $\Delta V_{Q}$            | -    | -        | 50   | mV   | $5 \text{ mA} \le I_Q \le 400 \text{ mA}$                                                          |  |
| Supply-voltage regulation                                        | $\Delta V_{Q}$            | _    | 15       | 25   | mV   | $V_{\rm I}$ = 6 to 36 V; $I_{\rm Q}$ = 5 mA                                                        |  |
| Supply-voltage rejection                                         | SVR                       | _    | 54       | _    | dB   | $f_{\rm r}$ = 100 Hz; $V_{\rm r}$ = 0.5 $V_{\rm pp}$                                               |  |
| Longterm stability                                               | $\Delta \overline{V_{Q}}$ | _    | 0        | _    | mV   | 1000 h                                                                                             |  |

1) Drop voltage =  $V_1 - V_Q$  (measured when the output voltage  $V_Q$  has dropped 100 mV from the nominal value obtained at  $V_1$  = 13.5 V)

## Characteristics (cont'd)

| Parameter                 | Symbol              | Li   | mit Valu | Jes  | Unit | Test Condition                         |  |  |
|---------------------------|---------------------|------|----------|------|------|----------------------------------------|--|--|
|                           |                     | min. | typ.     | max. |      |                                        |  |  |
| Reset Generator           |                     |      |          |      |      |                                        |  |  |
| Switching threshold       | $V_{rt}$            | 4.2  | 4.5      | 4.8  | V    | _                                      |  |  |
| Reset High level          | -                   | 4.5  | _        | _    | V    | $R_{\rm ext} = \infty$                 |  |  |
| Saturation voltage        | $V_{R}$             | _    | 0.1      | 0.4  | V    | $R_{\rm R} = 4.7 \ {\rm k}\Omega^{-1}$ |  |  |
| Pullup                    | R <sub>R</sub>      | _    | 30       | _    | kΩ   | -                                      |  |  |
| Saturation voltage        | $V_{D,sat}$         | _    | 50       | 100  | mV   | $V_{\rm Q}$ < $V_{\rm RT}$             |  |  |
| Charge current            | I <sub>d</sub>      | 8    | 15       | 25   | μA   | V <sub>D</sub> = 1.5 V                 |  |  |
| Delay switching threshold | $V_{ m dt}$         | 2.6  | 3        | 3.3  | V    | -                                      |  |  |
| Delay                     | t <sub>d</sub>      | _    | 20       | _    | ms   | <i>C</i> <sub>d</sub> = 100 nF         |  |  |
| Switching threshold       | $V_{\rm st}$        | _    | 0.43     | _    | V    | -                                      |  |  |
| Delay                     | t <sub>t</sub>      | -    | 2        | _    | μs   | <i>C</i> <sub>d</sub> = 100 nF         |  |  |
| Inhibit                   |                     |      |          |      |      |                                        |  |  |
| Turn-ON voltage           | $V_{\rm E2}$        | -    | 3        | 4    | V    | IC turned-ON                           |  |  |
| Turn-OFF voltage          | $V_{\rm E2}$        | 2    | _        | _    | V    | IC turned-OFF                          |  |  |
| Pulldown                  | $R_{E2}$            | 50   | 100      | 200  | kΩ   | -                                      |  |  |
| Hysteresis                | $\Delta V_{\rm E2}$ | 0.2  | 0.5      | 0.8  | V    | -                                      |  |  |
| Input current             | I <sub>E2</sub>     | _    | 35       | 100  | μA   | $V_{\rm IP2}$ = 4 V                    |  |  |
| Holding voltage           | $V_{\rm E6}$        | 30   | 35       | 40   | %    | Referred to $V_{\rm Q}$                |  |  |
| Turn-OFF voltage          | $V_{\rm E6}$        | 60   | 70       | 80   | %    | Referred to $V_{\rm Q}$                |  |  |
| Pullup                    | $R_{\rm E6}$        | 20   | 50       | 100  | kΩ   | -                                      |  |  |
| Overvoltage Protection    |                     |      |          |      |      |                                        |  |  |

| Turn-OFF voltage   | $V_{i,ov}$           | 42 | 44 | 46 | V | - |
|--------------------|----------------------|----|----|----|---|---|
| Turn-ON hysteresis | $\Delta V_{ m i,ov}$ | 2  | _  | 6  | V | - |

1) The reset output is Low between  $V_{\rm Q}$  = 1 V and  $V_{\rm RT}$ 



## **Test Circuit**



### **Application Circuit**



## **Time Response**



#### **Enable and Hold Behaviour**

Output Voltage V<sub>q</sub> versus Temperature T<sub>j</sub>



Charge Current I<sub>d</sub> versus Temperature T<sub>i</sub>



Drop Voltage V<sub>Dr</sub> versus Output Current I<sub>Q</sub> AED01488 700  $V_{\rm Dr}$ 1 mV 500 400  $T_{\rm j} = 125 \,^{\circ}{\rm C}$ 300 *T*<sub>j</sub> = 25 °C 200 100 0 100 300 0 200 400 600 mΑ ► I<sub>Q</sub>

#### Delay Switching Threshold $V_{dT}$ versus Temperature T<sub>i</sub>



#### Semiconductor Group

Current Consumption  $I_q$  versus Output Current  $I_q$ 



Output Current  $I_{q}$  versus Temperature  $T_{i}$ 



Current Consumption  $I_q$  versus Input Voltage  $V_1$ 



#### Output Current $I_{Q}$ versus Input Voltage $V_{I}$



Output Voltage  $V_{q}$  versus Inhibit Voltage  $V_{E2}$ 



Inhibit Current  $I_{E2}$  versus Inhibit Voltage  $V_{E2}$ 



#### **Package Outlines**



#### **Sorts of Packing**

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

Dimensions in mm



Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information" SMD = Surface Mounted Device

Dimensions in mm



#### Sorts of Packing

Package outlines for tubes, trays etc. are contained in our Data Book "Package Information"

Dimensions in mm

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.