Вперед, только вперед...

VW Transport Protocol 2.0 (TP 2.0) for CAN bus

Source: jazdw

CAN allows for data packets with a payload of up to 8 bytes, to send messages longer than 8 bytes it is necessary to use a transport protocol. The OBD-II specification for example makes use of ISO-TP (ISO 15765-2). Volkswagen however uses it's own transport protocol in its vehicles, known as VW TP 2.0.

This page gives a run down on how TP 2.0 works. Please note that there is an older VW TP 1.6 which was used in some vehicles. TP 1.6 is fairly similar but some of the parameters are fixed. Its also worth noting that I have worked all of this out from various presentations and documents that I have found on the net and from logging data. I have not had any access to the official documentation from VW so take any information with a grain of salt.

Typically the payload of TP 2.0 will be ISO 14230-3, Keyword Protocol 2000 (KWP2000) application layer messages.

The four message types

TP 2.0 works by opening data "channels" between two communicating devices. Once a channel is opened data packets can be exchanged by the two devices. To do this TP 2.0 uses four message types - broadcast, channel setup, channel parameters and data transmission.

Broadcast

The broadcast type has a fixed length of 7 bytes. It is sent 5 times in case of packet loss. Not sure what it is actually used for yet.

Byte 0 1 2 3 4 5 6
Description Dest Opcode KWP Data Resp Req Resp Req

Field description

Field Description
Dest Logical address of destination module, e.g. 0x01 for the engine control unit
Opcode 0x23 Broadcast request
0x24 Broadcast response
KWP Data KWP2000 SID and parameters
Resp Req 0x00 Response expected
0x55 or 0xAA No response expected

Channel setup

The channel setup type has a fixed length of 7 bytes. It is used to establish a data channel between two modules.

The channel setup request message should be sent from CAN ID 0x200 and the response will sent with CAN ID 0x200 + the destination modules logical address e.g. for the engine control unit (0x01) the response would be 0x201.

The communication then switches to using the CAN IDs which were negotiated during channel setup.

You should request the destination module to transmit using CAN ID 0x300 to 0x310 and set the validity nibble for RX ID to invalid. The VW modules seem to respond that you should transmit using CAN ID 0x740.

Byte 0 1 2 3 4 5 6
Description Dest Opcode RX ID V RX Pref TX ID V TX Pref App

Field description

Field Description
Dest Logical address of destination module, e.g. 0x01 for the engine control unit
Opcode 0xC0 Setup request
0xD0 Positive response
0xD6..0xD8 Negative response
RX ID Tells destination module which CAN ID to listen to
RX Pref RX ID Prefix
TX ID Tells destination module which CAN ID to transmit from
TX Pref TX ID Prefix
V 0x0 CAN ID is valid
0x1 CAN ID is invalid
App Application type, seems to always be 0x01 (maybe only for KWP)

Channel parameters

The channel parameters type has a length of 1 or 6 bytes. It is used to setup parameters for an open channel and to send test, break and disconnect signals

You should send a parameters request straight after channel setup using the CAN IDs negotiated.

Byte 0
Description Opcode

OR

Byte 0 1 2 3 4 5
Description Opcode BS T1 T2 T3 T4

Field description

Field Description
Opcode 0xA0 Parameters request, used for destination module to initiator (6 byte)
0xA1 Parameters respsonse, used for initiator to destination module (6 byte)
0xA3 Channel test, response is same as parameters response. Used to keep channel alive. (1 byte)
0xA4 Break, receiver discards all data since last ACK (1 byte)
0xA8 Disconnect, channel is no longer open. Receiver should reply with a disconnect (1 byte)
BS Block size, number of packets to send before expecting a ACK response
T1 Timing parameter 1, time to wait for ACK. T1 should be greater than 4*T3
T2 Timing parameter 2, always 0xFF
T3 Timing parameter 3, interval between two packets
T4 Timing parameter 4, always 0xFF

Timing parameters

Bits 7 6 5 4 3 2 1 0
Description Units Scale
Field description
Field Description
Units 0x0 0.1ms
0x1 1ms
0x2 10ms
0x3 100ms
Scale Number to scale the units by

Data transmission

The data transmission type has a length of 2 to 8 bytes. It is used for the transmission of actual data/payload bytes.

Data transmission should only occur after channel setup and parameter negotiation.

Byte 0 1 2 3 4 5 6 7
Description Op Seq Payload

Field description

Field Description
Op 0x0 Waiting for ACK, more packets to follow (i.e. reached max block size value as specified above)
0x1 Waiting for ACK, this is last packet
0x2 Not waiting for ACK, more packets to follow
0x3 Not waiting for ACK, this is last packet
0xB ACK, ready for next packet
0x9 ACK, not ready for next packet
Seq Sequence number, increments up to 0xF then back to 0x0
Payload KWP2000 payload. The first 2 bytes of the first packet sent contain the length of the message.

Example

This example shows how to open a channel to and read measuring block 1 from the engine control unit. Data values and the CAN IDs are in hex.

CAN ID Data Format Description
200 01 C0 00 10 00 03 01 Chan setup Initiate channel setup with ECU module, request it use CAN ID 0x300
201 00 D0 00 03 40 07 01 Chan setup ECU module replies, says to use CAN ID 0x740
740 A0 0F 8A FF 32 FF Chan param Tell ECU module to send 16 packets at a time, and set timing parameters
300 A1 0F 8A FF 4A FF Chan param ECU module responds with its parameters
740 10 00 02 10 89 Data Last packet, expecting ACK. Length is 2 bytes. Send KWP2000 startDiagnosticSession request 0x10 with 0x89 as a parameter
300 B1 Data ECU sends ACK response.
300 10 00 02 50 89 Data Last packet, expecting ACK. Length is 2 bytes. ECU sends KWP2000 positive response to startDiagnosticSession
740 B1 Data We send ACK response.
740 11 00 02 21 01 Data Last packet, expecting ACK. Length is 2 bytes. Send KWP2000 readDataByLocalIdentifier request 0x21 with 0x01 as a parameter
300 B2 Data ECU sends ACK response.
300 21 00 1A 61 01 01 00 00 Data Packet to follow, not expecting ACK. Length is 26 bytes. ECU sends KWP2000 positive response to readDataByLocalIdentifier followed by the requested data
300 22 27 00 00 22 00 80 1A Data Packet to follow, not expecting ACK. KWP2000 data continued.
300 23 32 4B 25 02 7A 25 00 Data Packet to follow, not expecting ACK. KWP2000 data continued.
300 14 00 25 00 00 25 00 00 Data Last packet, expecting ACK. KWP2000 data continued.
740 B5 Data We send ACK response.
740 A8 Chan param We send disconnect.

 

Тож самое но по русски

Источник: тут

VW Transport Protocol 2.0 (TP 2.0) for CAN bus

CAN позволяет передать пакет данных до 8-ми байт, чтобы отправить сообщение длиннее 8 байт необходимо использовать транспортный протокол. Например, OBD-II спецификация использует ISO-TP (ISO 15765-2). Однако, Volkswagen использует на своих автомобилях собственный транспортный протокол, известный как VW TP 2.0.

Эта страница дает краткое изложение о том, как работает TP 2,0. Пожалуйста, обратите внимание, что есть более старый протокол VW TP 1.6, который использовался в некоторых автомобилях. TP 1.6 очень похож, но некоторые параметры фиксированы. Также стоит отметить, что я выработал все это из различных презентаций и документов, которые я нашел в сети. У меня не было доступа к официальной документации от VW, поэтому вся информация может быть не точной.

TP 2.0 это ISO 14230-3, Протокол 2000 (KWP2000).

Четыре типа сообщений

TP 2.0 работает путем открытия данных "каналы" между двумя взаимодействующими устройствами. Как только канал открыт, два устройства могут обмениваться данными. Для этого используются четыре типа сообщений -

  1. трансляция,
  2. настройка каналов,
  3. параметры каналов,
  4. передача данных.

1. Трансляция

Тип трансляции имеет фиксированную длину 7 байт. Отправляется 5 раз в случае потери пакетов. Не уверен, что это на самом деле используется до сих пор.

Byte 0 1 2 3 4 5 6
Description Dest Opcode KWP Data Resp Req Resp Req

Описание полей

Поле Описание
Dest Логический адрес модуля назначения, например 0x01 для Блока Управления Двигателем.
Opcode 0x23 Запрос трансляции
0x24 Ответ трансляции
KWP Data KWP2000 SID and parameters
Resp Req 0x00 С ожиданием ответа
0x55 or 0xAA Без ожидания ответа

2. Настройка канала

Тип установки канал имеет фиксированную длину 7 байт. It is used to establish a data channel between two modules.

The channel setup request message should be sent from CAN ID 0x200 and the response will sent with CAN ID 0x200 + the destination modules logical address e.g. for the engine control unit (0x01) the response would be 0x201.

The communication then switches to using the CAN IDs which were negotiated during channel setup.

You should request the destination module to transmit using CAN ID 0x300 to 0x310 and set the validity nibble for RX ID to invalid. The VW modules seem to respond that you should transmit using CAN ID 0x740.

Byte 0 1 2 3 4 5 6
Description Dest Opcode RX ID V RX Pref TX ID V TX Pref App

Field description

Field Description
Dest Logical address of destination module, e.g. 0x01 for the engine control unit
Opcode 0xC0 Setup request
0xD0 Positive response
0xD6..0xD8 Negative response
RX ID Tells destination module which CAN ID to listen to
RX Pref RX ID Prefix
TX ID Tells destination module which CAN ID to transmit from
TX Pref TX ID Prefix
V 0x0 CAN ID is valid
0x1 CAN ID is invalid
App Application type, seems to always be 0x01 (maybe only for KWP)

Channel parameters

The channel parameters type has a length of 1 or 6 bytes. It is used to setup parameters for an open channel and to send test, break and disconnect signals

You should send a parameters request straight after channel setup using the CAN IDs negotiated.

Byte 0
Description Opcode

OR

Byte 0 1 2 3 4 5
Description Opcode BS T1 T2 T3 T4

Field description

Field Description
Opcode 0xA0 Parameters request, used for destination module to initiator (6 byte)
0xA1 Parameters respsonse, used for initiator to destination module (6 byte)
0xA3 Channel test, response is same as parameters response. Used to keep channel alive. (1 byte)
0xA4 Break, receiver discards all data since last ACK (1 byte)
0xA8 Disconnect, channel is no longer open. Receiver should reply with a disconnect (1 byte)
BS Block size, number of packets to send before expecting a ACK response
T1 Timing parameter 1, time to wait for ACK. T1 should be greater than 4*T3
T2 Timing parameter 2, always 0xFF
T3 Timing parameter 3, interval between two packets
T4 Timing parameter 4, always 0xFF

Timing parameters

Bits 7 6 5 4 3 2 1 0
Description Units Scale
Field description
Field Description
Units 0x0 0.1ms
0x1 1ms
0x2 10ms
0x3 100ms
Scale Number to scale the units by

Data transmission

The data transmission type has a length of 2 to 8 bytes. It is used for the transmission of actual data/payload bytes.

Data transmission should only occur after channel setup and parameter negotiation.

Byte 0 1 2 3 4 5 6 7
Description Op Seq Payload

Field description

Field Description
Op 0x0 Waiting for ACK, more packets to follow (i.e. reached max block size value as specified above)
0x1 Waiting for ACK, this is last packet
0x2 Not waiting for ACK, more packets to follow
0x3 Not waiting for ACK, this is last packet
0xB ACK, ready for next packet
0x9 ACK, not ready for next packet
Seq Sequence number, increments up to 0xF then back to 0x0
Payload KWP2000 payload. The first 2 bytes of the first packet sent contain the length of the message.

Example

This example shows how to open a channel to and read measuring block 1 from the engine control unit. Data values and the CAN IDs are in hex.

CAN ID Data Format Description
200 01 C0 00 10 00 03 01 Chan setup Initiate channel setup with ECU module, request it use CAN ID 0x300
201 00 D0 00 03 40 07 01 Chan setup ECU module replies, says to use CAN ID 0x740
740 A0 0F 8A FF 32 FF Chan param Tell ECU module to send 16 packets at a time, and set timing parameters
300 A1 0F 8A FF 4A FF Chan param ECU module responds with its parameters
740 10 00 02 10 89 Data Last packet, expecting ACK. Length is 2 bytes. Send KWP2000 startDiagnosticSession request 0x10 with 0x89 as a parameter
300 B1 Data ECU sends ACK response.
300 10 00 02 50 89 Data Last packet, expecting ACK. Length is 2 bytes. ECU sends KWP2000 positive response to startDiagnosticSession
740 B1 Data We send ACK response.
740 11 00 02 21 01 Data Last packet, expecting ACK. Length is 2 bytes. Send KWP2000 readDataByLocalIdentifier request 0x21 with 0x01 as a parameter
300 B2 Data ECU sends ACK response.
300 21 00 1A 61 01 01 00 00 Data Packet to follow, not expecting ACK. Length is 26 bytes. ECU sends KWP2000 positive response to readDataByLocalIdentifier followed by the requested data
300 22 27 00 00 22 00 80 1A Data Packet to follow, not expecting ACK. KWP2000 data continued.
300 23 32 4B 25 02 7A 25 00 Data Packet to follow, not expecting ACK. KWP2000 data continued.
300 14 00 25 00 00 25 00 00 Data Last packet, expecting ACK. KWP2000 data continued.
740 B5 Data We send ACK response.
740 A8 Chan param We send disconnect.

 

Source: now

CAN FD

The improved CAN data link layer protocol (also known as CAN FD) uses a second higher bit-rate in the data-phase (see Figure 1). In the arbitration phase and the ACK phase, the bit-rate is still limited to 1 Mbit/s depending on the network overall length. The in-bit-time detection is limited by the internal transceiver delays and the bus-line delay, which shall be smaller than the time segment before the sample-point (TSEG1). The “free” transmission in the data phase is limited by the transceiver-internal low-pass filter capability. In addition, the data-field as has been prolonged to up to 64 byte. Both improvements lead to higher throughputs in CAN networks. The improved efficiency (frame overall length divided by the payload) combined with the higher speed increases the throughput significantly

To distinguish between the classic CAN data frame and the improved CAN data frame, one of the reserved bits is used (EDL = extended data length). In order to code the larger payloads (data-fields with more than 8 byte), the remaining DLC (data length code) bit combinations are used. Data field length of 12, 16, 20, 24, 32, 48, and 64 are supported additionally. The control field comprises additional bits (see Figure 2). The RTR bit is reserved, meaning that there is no improved CAN remote frame. The EDL bit substituting the r1 in the classic CAN data frame is transmitted recessively indicating that the following bits shall be interpreted according to the improved CAN protocol. The next bit is reserved followed by the BRS (bit rate switch) bit. The BRS bit is used to switch to the higher configured bit-rate. The next bit (ESI = error state indicator) informs, if the transmitter is in error active (dominant) or error passive (recessive) state.

SOF = Start of frame (bit is always of dominant state)
ID = Identifier (frame priority and content indication)
RTR = Remote transmission request (dominant, if data frame)
IDE = ID extension (dominant for base frame format)
EDL = Extended data length (recessive, if data field is longer than 8 byte)
r0/1 = reserved bit BRS = Bit rate switch (recessive, if switched to alternate bit-rate)
ESI = Error state indicator (recessive, if transmitting node is in error passive state)
DLC = Data length code (indicates the length of the following data field)
CRC = Cyclic redundancy check (15-bit, 17-bit, or 21-bit)
D = Delimiter of CRC/ACK field (bit is always of recessive state)
ACK = Acknowledgment slot (correctly receiving node sends a dominant bit)
EOF = End of frame (all bits are always of recessive state)
IFS = Inter-frame space (the first two bits are always of recessive state)
IDLE = bus is in recessive state

In order to keep the reliability of the classic CAN protocol, the CRC polynomial are changed. The introduced 17-bit CRC polynomial is used for improved CAN data frames up to 16-byte payloads. For larger frames, the 21-bit CRC polynomial is used. This means the improved CAN controllers supporting the classic and the improved CAN protocol starts all three CRC polynomials. If the bit following the IDE bit is recessive, the classic 15-bit CRC polynomial is discontinued. After processing the DLC bits, the CAN controller stops calculating one of the other CRC polynomials. The improved CAN protocol is backwards compatible. This means, the support the classic CAN data and remote frames. However, if a CAN controller supporting just the classic CAN protocol sees an improved CAN data frame, it will send error flags. Therefore migration paths are necessary. One option is the usage of partial networking. Another is to separate nodes in two independent CAN network segments. It is also possible, to set the classic CAN controllers in listen-only mode.

 

<< Вернуться на предыдущую страницу